FOLLOW-UP INVESTIGATIONS

OF

PCE CONTAMINATION

IN

GROUNDWATER

ATLANTIC, IOWA

August & November 1998

Site: Aflantic WS
ID #: Ind x 951300
Break: 2.5
Other: A72 Q pf
2:1-98

40251493

SUBERFIND RECORDS

Ву

The Iowa Department of Natural Resources Uncontrolled Sites Section February 1999

FOLLOW-UP INVESTIGATION OF PCE CONTAMINATION IN GROUNDWATER, ATLANTIC, IOWA

August & November 1998

INTRODUCTION: In 1982 tetrachloroethene (also called perchloroethene or PCE) was first detected in the Atlantic Municipal Utilities Well #7 at a concentration of 170 ug/l. A high of 260 ug/l of PCE was detected in water from Well #7 in 1984. (The drinking water maximum contaminant level for PCE is 5 ug/l.) PCE has sporadically been detected below the MCL in several of the other municipal wells. Since August 1982 the Atlantic Municipal Utilities has pumped Well #7 (more or less) continuously to waste to contain the PCE contamination and prevent it from reaching other wells. Since December 1987 Well #7 has been pumped directly to the sanitary sewer. Pumping Well #7 to waste continues to be an effective means of protecting the other municipal wells. The Atlantic Municipal Utilities has collected monthly samples from Well #7. Sample results suggest a gradual decrease in levels of PCE. An average of about 100 ug/l of PCE has been found in water from Well #7 over the past several years.

In August of 1987 Ecology & Environment, Inc., under contract with the U.S. Environmental Protection Agency, conducted a soil-gas investigation that delineated the extent of PCE contamination. Results from the 1987 Ecology & Environment investigation suggested a source of contamination just south of 7th St. (U.S. Highway 6) between Buttermilk Creek and Plum St. (Figure 1) The area of highest PCE contamination found in the 1987 study was in front of the fast-food restaurant just west of Buttermilk Creek. A couple hundred feet to the west of this contaminant "hot spot" is the location of a former (i.e., 1974-1986) Iowa Department of Transportation (IDOT) material testing laboratory. This location is also believed to be the site of a dry cleaning business prior to about 1960. PCE is a solvent commonly used for dry cleaning and metal degreasing. The 1987 study hypothesized that a solvent spill by the former dry cleaner or testing lab migrated by surface runoff and groundwater flow to the hot spot found in front of the fast-food restaurant, possibly being expedited by the 7th St. storm sewer system.

The 1987 investigation conducted by Ecology & Environment, Inc. involved primarily soil-gas sampling and on-site analyses of the soil-gas samples. Soil-gas samples were collected by driving a pipe about 5-6 feet into the ground. A vacuum was then imparted on the pipe to extract soil gas from inlet ports near the bottom of the pipe. A portable gas chromatograph was used to analyze the soil gas samples. The detection limit for PCE in the 1987 study was about 0.1 ug/l which is equivalent to about 0.01 PPM. The highest level of PCE detected was 119 ug/l (17.5 PPM). As part of the 1987 investigation, three soil samples were collected at depths of 5 feet or less in the areas with the highest levels of PCE in the soil-gas samples. Only low levels of PCE were found in the soil samples (i.e., 0.002 mg/kg, 0.020 mg/kg, and 0.029 mg/kg).

In August of 1998 the Iowa Department of Natural Resources (DNR) conducted a follow-up investigation of PCE contamination in groundwater that has impacted the Atlantic Municipal Utilities' public water supply. Additional follow-up investigation was conducted by DNR in November 1998. The objective of the 1998 investigations by the DNR was to better define the source of the PCE contamination.

PROCEDURES: The 1998 investigations primarily utilized soil-gas sampling similar to the 1987 investigation. A Geoprobe was used to drive rods into the ground for collecting soil-gas samples. Figure 2 is a schematic of the soil-gas sampling set-up. Soil-gas samples were collected at depths ranging from 6 to 30 feet. After reaching the desired depth, a vacuum was placed on the sampling system and at least 2 liters of air was purged prior to collecting the soil-gas sample. Soil-gas samples were analyzed directly with the DNR's portable gas chromatograph. A detection limit of about 0.01 PPM was achieved for PCE in air which comparable to the 1987 study.

Soil samples were also collected using the Geoprobe® by pushing a 4-ft. long, solid-tube core sampling device. Continuous, 1.5 inch-diameter soil samples were collected with this equipment. The gas chromatograph was used to indirectly analyze soil samples. Quart glass jars were filled roughly half full with each soil sample. The lid was then placed on the jars, they were microwaved for about a minute, and the headspace was then analyzed.

RESULTS: Figure 2 shows the locations of samples collected during the 1998 investigations. A total of 25 soil-gas and 10 soil samples were collected and analyzed as part of the August 1998 field work. An additional 9 soil-gas samples were collected and analyzed in November 1998. Table 1 summarizes soil-gas results. Figure 3 graphically displays soil-gas results.

Table 2 summarizes soil results. It should be noted the soil-headspace results are not a direct representation of PCE concentrations in soil. They do provide a good comparison of relative levels of PCE and, based on previous work, a headspace reading of 100 PPM of PCE roughly correlates to 1 mg/kg (1,000 ug/kg) of PCE in soil.

The two soil samples were collected in close proximity to each other. The second soil sample was located 12 feet east of SG-15. In Table 2 the samples representing a depth range (e.g., 4-8 ft.) were composited over that range. The samples identified by a single depth were not composited. The soil corings showed a general soil profile as follows.

<u>Depth</u>	<u>Material</u>
0-1 ft.	Fill
1-6 ft.	Silt with some clay
6-12 ft.	Silt with more clay
12-15 ft.	Sand
15 + ft.	Silt with some clay

Attempts to collect groundwater samples were made at two locations. A half-inch diameter PVC pipe with a 5 ft. bottom screened section was placed in the second soil-core hole (between SG-15 and SG-16) to a depth of 17 feet. No water was found in the well after one day. This temporary well was left in-place and no water has subsequently been found in it. An attempt to collect groundwater was also made in August at the SG-22 location. Probe rods were driven to a depth of 30 feet and the pipe was left in the ground overnight. No water was found in the pipe the following morning. A 30-ft. deep soil-gas sample was then taken from the pipe and the rods were

retracted. The openings in this temporary well may have been smeared shut during installation, thus preventing groundwater from entering the well. In November another attempt to collect groundwater was made near the SG-22 location. Probe rods were driven to a depth of 33 feet and then retracted. Thirty-three feet of half inch plastic pipe with a 5 ft. bottom screened section were placed in the hole. No water was found in this well initially or the following day. All but 10 ft. of the pipe were removed and the hole was sealed with bentonite pellets.

<u>DISCUSSION</u>: The findings from these investigations were similar in many respects to the 1987 investigation. Two lobes of contamination—in front of the fast-food restaurant and near the former dry cleaners/IDOT lab—with an area of very low soil-gas contamination in-between were found in both studies. The highest level of PCE in soil-gas found in the 1987 study was 119 ug/l (17.5 PPM) in front of the fast-food restaurant. A comparable level, 16.3 PPM, was found in the same general area in the current study. However, the 1987 study found a maximum level of PCE in soil gas in the former dry cleaners/IDOT lab area of only 35.6 ug/l (5.2 PPM). With the greater number of samples taken in this area during the 1998 investigation, a substantially different picture of contaminant occurrence was found. PCE in soil gas was found in excess of 10,000 PPM in one soil-gas sample and was found in several other samples in this area at levels much greater than found near the fast-food restaurant.

Based on these findings it can be concluded that the primary source of PCE contamination is not in front of the fast-food restaurant as previously believed. Instead, the former dry cleaning/IDOT lab area appears to be the primary contaminant source area (Figure 4). Despite lack of information regarding the reported former dry cleaners, the evidence strongly suggests that such a business did exist and was the source of PCE contamination. Dry cleaners commonly use and have used PCE in significant quantities. It is doubtful that the former IDOT lab even used PCE and, if it did, it would likely have been in very small quantities.

The same of the

The soil sampling identified significant PCE contamination in the clayer silt material (i.e., loess) to a depth of at least 20 feet. The sand lens found at 12-15 feet had only very low levels of PCE. This finding illustrates how the finer silts and clays retain PCE to a much greater degree than the coarser sand.

The current investigation was not able to identify the groundwater table to a depth of 33 feet. The relatively deep water table leaves a large unsaturated zone above it in which contaminants may reside. The depth to which contaminants exist in this unsaturated zone has not been determined.

In the report on the 1987 investigation, it was hypothesized that surface and groundwater runoff, possibly expedited by the storm sewer, accounted for the high level of PCE in front of the fast-food restaurant. (That area was assumed to be the primary source of contamination based on that information.) All of those methods of PCE migration could have occurred. In addition, direct discharge of PCE to the sanitary sewer, which subsequently leaked, could also have occurred. Regardless, it appears that the silty, clayey soils to a depth of at least 20 feet in the area of the former dry cleaners is the predominant source of PCE contamination that impacts groundwater.

The deep soil contamination could also be the result of incidental leaks and spills during normal dry cleaning operations, as well as a possible larger spill or spills.

The soil-gas sample with the highest level of PCE (>10,000 PPM at location SG-25) was collected in the middle of a concrete parking lot at a depth of 9 feet. A 6-ft. deep soil-gas sample taken at the same location revealed only 0.39 PPM of PCE. This brings into question the variability of PCE levels in soil gas with depth. The SG-25 location was the only paved location that was sampled. Soil gas is expected to generally diffuse upward through the soil profile to the atmosphere. Pavement will inhibit movement of soil gas to the atmosphere. Therefore, soil gas may move laterally under a paved area, possibly explaining the low concentration of PCE found in the 6-ft. sample collected at SG-25. Follow-up soil-gas sampling in November was conducted at multiple, deeper depths to determine if large variations in PCE concentrations existed with depth elsewhere. Substantially higher PCE levels were found at greater depths in SG2-3 sample location. This phenomenon was not found in the other areas sampled. The findings support the interpretation of the primary PCE source area as shown in Figure 4.

PCE is a material that is heavier than water (called a "dense non-aqueous phase liquid" or DNAPL). Such materials can sink below the groundwater table and pool in low areas on top of an impermeable material such as shale. Liquid PCE can also become trapped in the cracks in bedrock or pore spaces between soil particles above and below the water table. If a DNAPL situation exists below the water table, it may constitute the primary source of groundwater contamination in which case total cleanup of soil above the water table would not resolve the groundwater contamination problem. The information currently available cannot confirm or deny the existence of a deep DNAPL situation.

<u>CLEANUP OPTIONS</u>: Assuming the assessment of the contaminant source area provided in this report is confirmed by the subsequent investigation and a deep DNAPL situation does not exist, several approaches to cleanup of the site will likely be available. If a significant DNAPL situation is found, cleanup options will have to be re-evaluated. Cleanup options fall into 3 general categories: containment, ex-situ source control, and in-situ source control.

Containment.

Containment involves physically limiting migration of contaminants. This can be done with physical barriers to groundwater flow (e.g., sheet piling) or hydraulic barriers, i.e., wells that intercept contaminants before they migrate elsewhere. Physical barriers may still require pumping of groundwater from within or upgradient of the barrier, thus often providing little benefit over hydraulic containment alone.

Well #7 has been operating as an "interceptor well" to provide hydraulic containment. It has been proven to be successful, but has the disadvantages of having no end in sight and leaving groundwater contamination in the area between the source and Well #7.

A new groundwater interceptor well (or wells) could probably be located at or near the PCE source area to intercept contaminants before they migrate towards Well #7. This would have the advantage of providing for accelerated cleanup of groundwater between the source area and Well

#7. However, Well #7 would still have to be pumped to waste for some period of time (several years??) until the contaminants had sufficient time to flush out of the system. An interceptor well (or wells) near the source area would likely have the advantage of pumping at a lesser rate than Well #7, eventually resulting in lower power costs for pumping. Handling of water from a source-area interceptor well may require additional treatment, if direct discharge to the sanitary sewer is not appropriate. Such additional treatment would likely be air stripping and/or carbon adsorption, either or both of which would require ongoing maintenance and cause a substantial increase in costs. Without source removal activities, a source-area interceptor well would also have to be pumped for an indefinite period of time.

Ex-Situ Source Control.

Ex-situ source control would involve excavating the highly contaminated soil that is a source of groundwater contamination. The soil would then have to be treated and disposed of properly. In the likely event that the excavated soil would be considered a hazardous waste, disposal would have to be at an off-site hazardous waste disposal facility (e.g., hazardous waste landfill, incinerator). On-site treatment options would likely not be possible do to the limited area and surrounding development. Since there are no licensed hazardous waste facilities in Iowa, off-site disposal and/or treatment would involve transporting the material out of state. Assuming a 70 ft. by 70 ft. by 25 ft. deep area of excavation, costs could easily exceed \$1,000,000. Substantially lower costs could be realized if all or some of the excavated soil was not classified as a hazardous waste, in which case it could probably be taken to a local, permitted landfill.

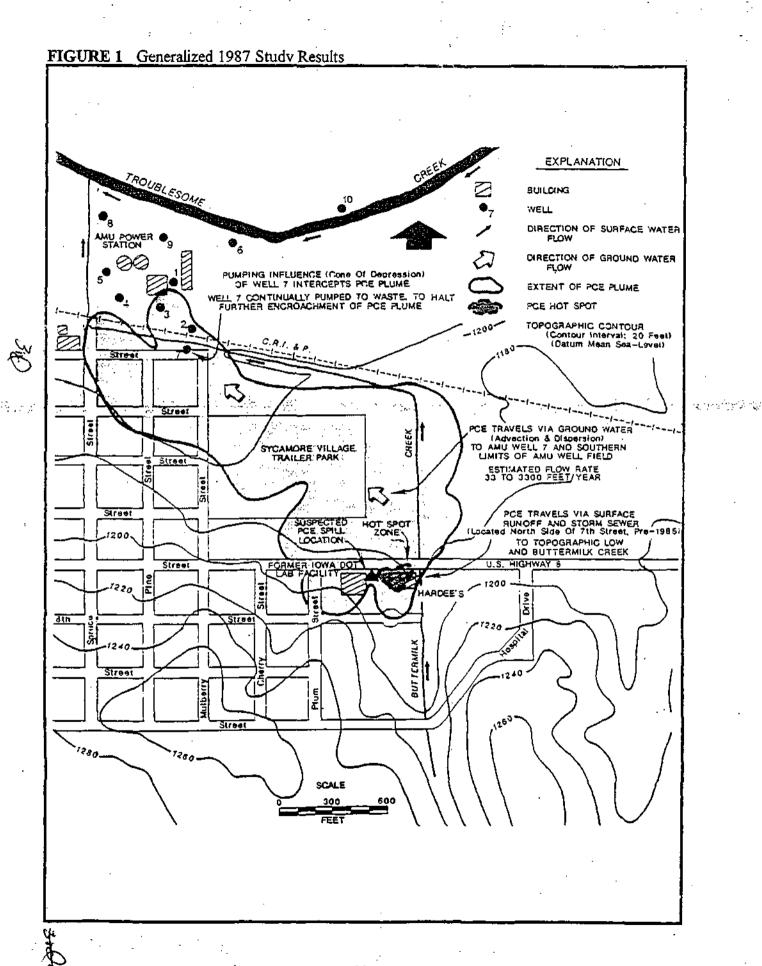
In-Situ Source Control.

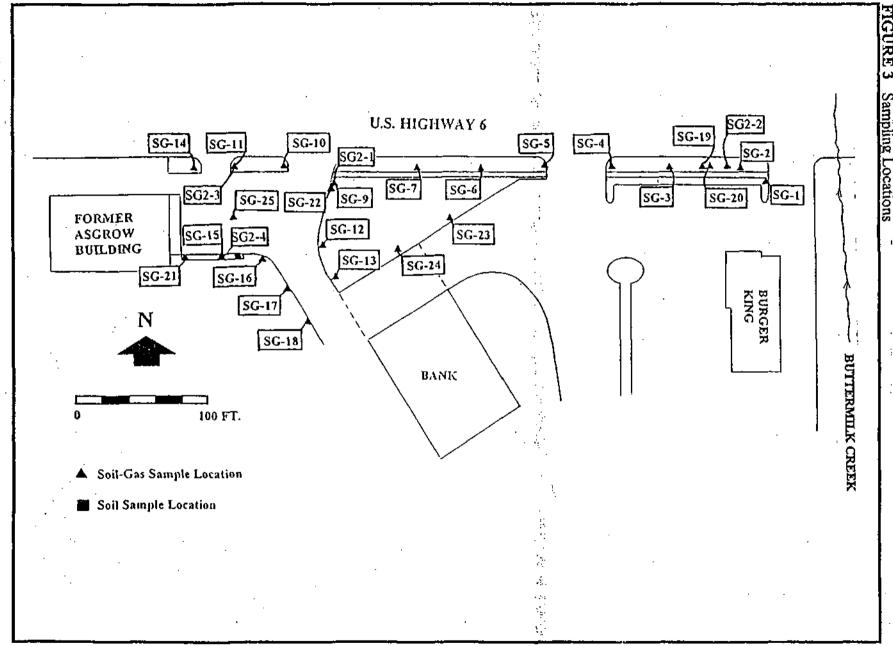
In-situ source control measures would involve managing contaminants in-place, i.e., without excavation. In-situ methods may involve physically stripping contaminants from soil particles, biologically degrading the contaminants, or immobilizing the contaminants so they can no longer migrate to groundwater. Biological treatment techniques are largely unproven but may be worth pursuing if a vendor is willing to demonstrate the effectiveness of their process at the site. In-situ immobilization techniques (e.g., heating contaminated soil to a molten mass that hardens like glass) tend to be very expensive and would probably not be suitable for this site. The most proven in-situ method for stripping of contaminants from soils is a process called soil vapor extraction (SVE). SVE simply involves placing a vacuum on wells screened above the water table to greatly accelerate airflow through subsurface soils. Volatile contaminants (e.g., PCE) are stripped from the soil to the passing air and exhausted to the atmosphere from the vacuum pump. Treatment of air before it is discharged to the atmosphere (typically carbon adsorption) may be required to meet air quality regulations.

SVE may be an effective and economical remedial method for the Atlantic site. For SVE to be effective it must be possible to obtain a good airflow through the subsurface soils. Removal of contaminants from soil is directly related to the amount of airflow that can be induced. Therefore, SVE does not work well in very tight soils. The soil-gas sampling conducted at the site provided a general indication of the ability to move air through the subsurface soils. Generally good air movement was noted during the soil-gas sampling which suggests that SVE may be effective. The apparent source area is under a concrete parking lot. This situation may increase initial costs

of installing an SVE system, but may enhance performance of the system. Impermeable caps are sometimes placed over SVE remediation areas to prevent short circuiting of air from the surface.

RECOMMENDATIONS: Installation of a groundwater monitoring well at the source area (i.e., the vicinity of SG-11, SG-12, SG-25, and SG2-3) is recommended. Such a well would serve multiple functions. Soil sampling during installation would provide information on the magnitude and distribution of contaminants in subsurface. Groundwater samples together with soil samples should enable the determination of whether or not a DNAPL situation exists. A monitoring well could also be constructed to serve as an interceptor well. Another monitoring well in the vicinity of SG-20 is recommended. The main purpose of such a monitoring well would be to determine whether or not soil and groundwater contamination exist that are indicative of a significant contaminant source in the near vicinity. Groundwater sampling on the north side of Highway 6 by Geoprobe[®] or monitoring wells may also be beneficial in confirming contaminant source areas. After the above-recommended work is completed, clean-up actions can be selected. If the current assessment is confirmed and a significant DNAPL situation is not found, a soil vapor extraction and/or other remedial pilot study will likely be warranted prior to final selection of a clean-up plan.


The issue of liability for additional investigation and any subsequent clean-up action is not straightforward. There is little information regarding the party that likely caused the contamination (i.e., the former dry cleaners). The former dry cleaners is probably not a viable responsible party. The current owner of the property, the nearby bank, clearly did not contribute to the contamination. Therefore, under the "Blue Chip" ruling by the Iowa Supreme Court, the bank could be liable only for certain investigative costs. Since the contamination impacts a public water supply with no clear, viable responsible party, it is recommended that the Iowa Hazardous Waste Remedial Fund be used to assist the Atlantic Municipal Utilities in pursuing additional investigative and clean-up activities at the site.


TABLE 1 SOIL-GAS RESULTS

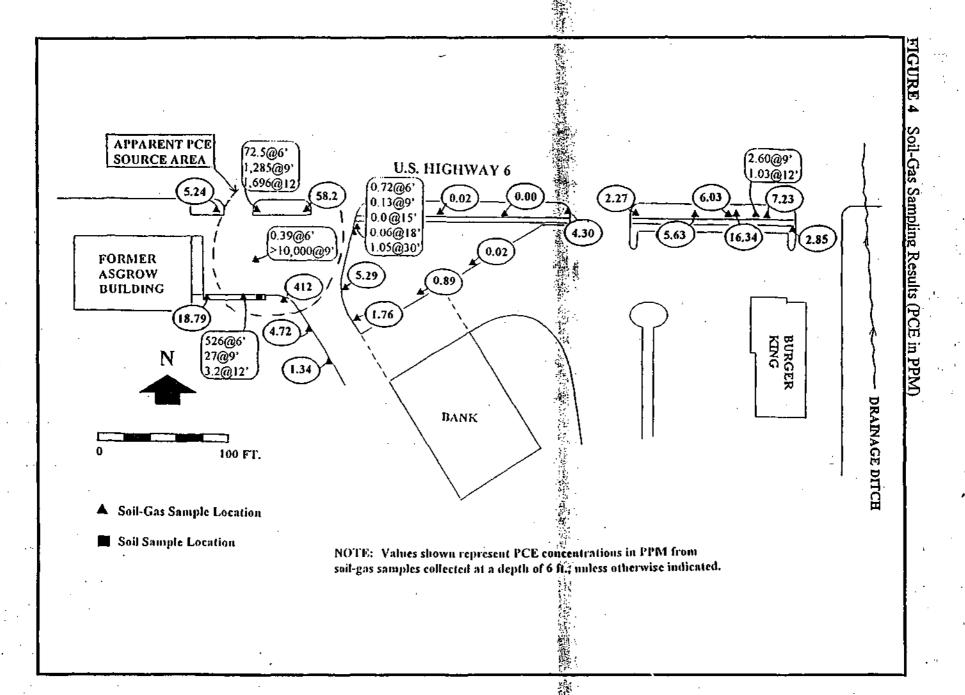

Sample Location No.	Sample Depth (Ft.)	PCE Concentration (PPM)
SG-1	6	2.85
SG-2	6	7.23
SG-3	6	5.63
SG-4	6	2.27
SG-5	6	4.30
SG-6	6	0.00
SG-7	6	0.02
SG-9	6 .	0.72
SG -10	· 6	58.2
SG- 11	6	72.5
SG-12	6	5.29
SG-13	6	1,76
SG-14	6	5.24
SG-15	6	526
SG-16	and the 6 control of the con-	5
SG-17	6 ·	4.72
SG-18	6	1.34
SG-19	6·	6.03
SG-20	6	16.34
SG-21	6	18.79
SG-22	30	1.05
SG-23	. 6	0.02
SG-24	6	0.89
SG-25-6	6	0.39
SG-25-9	9	>10,000
SG2-1-9	9	0.13
SG2-1-15	15	0.00
SG2-1-18	18	0.06
SG2-2-9	9	2.60
\$G2-2-12	12	1.03
SG2-3-9	9	1,285
SG2-3-12	12	1,696
SG2-4-9	9	27.06
SG2-4-12	12	3.21
	-	

TABLE 2 SOIL HEADSPACE RESULTS

	Sample Depth (Ft.)	Headspace PCE (PPM)
Sample 1	1-6	3.2
	6-12	140
	12-14 (sand)	0.50
Sample 2	0-4	14
•	4-3	28
	8-12	390
	12-16	560
	16-20	300
	15 (sand)	4.30
	16	350

THE UNIVERSITY OF IOWA

09, April 2001

Jon Martens
Atlantic Municipal Utilities
15 W 3rd Street
PO Box 517
Atlantic, IA 50022

RE: UHL Sample #200102388

Dear Mr. Martens:

Sample number 200102388, collected on 4/02/01 from the location of well #7, was originally analyzed for the BEDROC compounds by the OA-1 method. Using the OA-1 method the quantitation limit for Methyl-t-butyl ether is 15ug/l. The compound was detected below the quantitation limit so it was then analyzed by method 524.2 which is a drinking water method with much lower quantitation limits.

Methyl-t-butyl ether was detected again by the 524.2 method. There were also some additional compounds detected and they are as follows, with the "J" meaning it was below the quantitation limit of 0.5ug/l.

Trichlorofluoromethane	0.2 ug/l	J
1,1-Dichloroethene	0.1 ug/l	J
cis-1,2-Dichloroethene	0.2 ug/l	J
Chloroform	0.6 ug/l	
1,1,1-Trichloroethane	0.3 ug/l	J
Trichloroethene	1.3 ug/l	
Tetrachloroethene	110 ug/l	

If you have any questions, please feel free to call. Sincerely,

- hisa tumbemann

Lisa Limkemann Chemist

Enclosures

HYGIENIC LABORATORY

The University of Iowa

Date of report: 04-11-2001

I.I.II...II...IIII
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 200102388
Date Received Project BEDROC
Date Collected 04-02-200
Collection Site Well 7

Collection Town | Atlanti | Water | Reference | PWS # | Collector | PARRO

Phone Purchase Order

04-03-2001 BEDROC 04-02-2001 13:40 well 7 Atlantic water PWS #1509074

PARROTT TROY (712) 243-1395

Comments

Received samples at 12 degrees C.

Results of Analyses

Total Extractable Hydrocarbons

total Extractable Hydrocarbons					
Analyte	Concentration ug/L	Quantitation Limit			
Total Extractable Hydrocarbons	<400	400			
Comments The quantitation limit was raised due to the presence of a					
phthalate which is not typically present in	n petroleum products.				
Photosland was after accordant with	plactic products				

Phthalates are most often associated with plastic products.
The presence of the phthalate was determined by

The presence of the phthalate was determined by gas chromatography/mass spectrometry.

Date Analyzed: 04-05-2001

Method: OA-2

Date Extracted: 04-04-2001 Extraction Method: EPA 3510 Analyst: WB Verified: SM Analyst: DS

Verified: GJ

GC/MS Volatiles

Analyte	Concentration ug/L	Quantitation Limit	ing the second
Benzene	<1	1	
Toluene	<2	2	
Ethylbenzene	<2	2	
Total Xylenes	<5	5	
Methyl-t-butyl ether (MtBE)	<15 J	15	
The control of the co			<u> </u>

Comments Please note that the pH of this sample was greater than 2.5.

Please note that Trichloroethylene was found in the analysis of this sample. Tetrachloroethylene was also found at a relatively high concentration in the analysis of this sample.

J - Please note that this compound was observed below the quantitation limit in the analysis of this sample.

Date Analyzed: 04-03-2001

Method: OA-1

Analyst: LL

Verified: TC

The University of Iowa

Page 2 Sample Number 200102388

GC/MS 524.2 Volatiles

Analyte	Concentration ug/E	Quantitation Limit
Methyl-t-butyl ether (MtBE)	0.7	0.5
the analysis of this Trichlorofluorometi	were observed above the quantitation limit i sample. Also note that 1,1-Dichloroethene hane, cis-1,2-Dichloroethene and ine were observed below the quantitation li	2,
Date Analyzed: 04-04-2001		Analyst: L.I.

Date Analyzed: 04-04-2001 Method: EPA 524.2 Analyst: LL Verified: JN

D

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

Iowa Laboratory Certification No. 027. AIHA, ICR, NVLAP, USEPA and other credentials available upon request.

The University of Iowa

Date of report: 10-20-1997

Sample Number 9707799 Date Received 10-10-1997

Project

Date Collected Collection Site

Collection Site | a.m.u. well #7
Collection Town | Atlantic
Description | water

Description Reference Collector

Phone (712) 243-1395

10-09-1997 10:00

PWS Id & Type Purchase Order

ype

Results of Analyses

Volatile Organic Analysis

Analyte ug/L Quantitation Limit

Tetrachloroethylene 83 0.5

Comments The chromatographic profile of the sample indicates the presence

The chromatographic profile of the sample indicates the presence of 1,1,1-Trichloroethane and Trichloroethylene. There is also a possible indication of the presence of vinyl chloride, although the possible vinyl chloride may be a by-product from the preservatives.

Date Analyzed: 10-16-1997

Method: QA-502.2

Analyst: CR

Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

Iowa Laboratory Certification No. 027. AIHA, ICR, NVLAP, USEPA and other credentials available upon request.

The University of Iowa

Date of report: 09-11-1997

I.I.II...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9706623 Date Received 09-04-1997

Project

Date Collected 09-03-1997 10:00
Collection Site a.m.u. well #7
Collection Town
Description water

Description Reference

Collector ANDERSON DAN
Phone (712) 243-1395

PWS Id & Type Purchase Order

Results of Analyses

Volatile Organic Analysis

Analyte		Concentrati ug/L	on	Quantitation	Limit	
Tetrachloroethylene	-	93		0.5		
Comments	The chromatographic profile of the sampl	e indicates t	he presence			
	of I 1 I Trichlorouthana and Trichlorout	n.lama		1		

Date Analyzed: 09-09-1997

Method: OA-502.2

Analyst: CR

Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

Iowa Laboratory Certification No. 027. AIHA, ICR, NVLAP, USEPA and other credentials available upon request.

The University of Iowa

Date of report: 08-13-1997

I.I.II...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9705805
Date Received 08-07-1997
Project

Date Collected Collection Site Atlanta Description wat

08-05-1997 10:00 a m u well #7 Atlantic water

Collector Phone (7)
PWS Id & Type

Purchase Order

Reference

ANDERSON DAN (712) 243-1395

Results of Analyses

Volatile Organic Analysis

Analyte		Concentration ug/L	Quantitation Limit	
Tetrachioroethylene	,	84	0.5	
Comments	The chromatographic profile for this samp	le indicates the		
	presence of trichloroethylene		J .	

Date Analyzed: 08-07-1997

Method: OA-502.2

Analyst: CR Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

Iowa Laboratory Certification No. 027. AIHA, ICR, NVLAP, USEPA and other credentials available upon request.

The University of Iowa

Date of report: 07-17-1997

I.I.II...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number Date Received 9704771 07-10-1997

Project

Date Collected
Collection Site
Collection Town

07-09-1997 10:00 a.m.u well #7 Atlantic

Description Reference

water

Collector Phone ANDERSON DAN (712) 243-1395

PWS Id & Type Purchase Order

Results of Analyses

Volatile Organic Analysis

	Analyte	Concentration ug/L	Quantitation Limit ::
Ì	Tetrachloroethylene	72	0.5
ĺ	Comments The chromatographic profile for this samp	ole indicates the	

presence of Trichloroethylene.

Date Analyzed: 07-15-1997

Analyst: CR Verified: PK

Method: OA-502.2

ug/L - Micrograms per Liter

Description of units used within this report

Quant Limit - Lowest concentration reliably measured

Iowa Laboratory Certification No. 027. AIHA, ICR, NVLAP, USEPA and other credentials available upon request.

The University of Iowa

Date of report: 06-16-1997

Sample Number
Date Received
Project

Project
Date Collected
Collection Site
Collection Town
Description
Reference
Collector

Phone PWS Id & Type Purchase Order

9703811 06-10-1997

water

06-09-1997 10:00 a.m.u. well #7 Atlantic

ANDERSON DAN (712) 243-1395

Results of Analyses

Volatile Organic Analysis

Analyte	Concentrat ug/L	ion	Quantitation Limit	13.
Tetrachloroethylene	76	<u> </u>	0.5	<u> </u>
Date Applyzed: 06-12-1007			Analyst: CD	-

Date Analyzed: 06-12-1997

Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

Iowa Laboratory Certification No. 027. AIHA, ICR, NVLAP, USEPA and other credentials available upon request.

Method: OA-502.2

Hygienic Laboratory

The University of Iowa

Date of report: 05-12-1997

I.I.I.I...II....III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 97
Date Received 05
Project

Project
Date Collected
Collection Site
Collection Town
Description

Reference Collector Phone

PWS Id & Type
Purchase Order

9702776

05-06-1997

05-05-1997 10:00 a.m.u. well #7

Atlantic water

ANDERSON DAN (712) 243-1395

Results of Analyses

Volatile Organic Analysis

	Analyte:	Concentration ug/L		
	Tetrachloroethylene	100	0.5	a la reguera la participal.
-	Date Analyzed: 05-08-1997		Analyst: CR	

Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 04-14-1997

III.II...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9701948 Date Received 04-08-1997 **Project** Date Collected 04-07-1997 10:45 Collection Site a.m.u. well #7 Collection Town Atlantic Description water Reference Collector ANDERSON DAN Phone: (712) 243-1395 PWS Id & Type

Purchase Order

Results of Analyses

Volatile Organic Analysis

Analyte	Concentration ug/L	Quantitation Limit
Tetrachloroethylene	68	0.5
Date Analyzed: 04-11-1997	<u> </u>	Analyst: CR
Method: OA-502.2		Verified: PK

.

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 03-27-1997

LIAH...II....J.I.Ah...III JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC IA 50022

Sample Number 9701488 Date Received 03-18-1997

Project

Date Collected Collection Site Collection Town

amu well #7 Atlantic water

03-17-1997 09:30

Reference Collector ANDERSON DAN

Description

Phone (712) 243-1395 PWS Id & Type

Purchase Order

Results of Analyses

Volatile Organic Analysis

Analyte	ug/L	Quantitation Limit
Tetrachloroethylene	82	0.5 Total Control of the State of the Control of the State of the Stat

Date Analyzed: 03-25-1997

Method: OA-502.2

Analyst: WB Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 02-19-1997

I.I.II...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9700973
Date Received 02-13-1997
Project

Date Collected
Collection Site
Collection Town
Description

02-12-1997 10:15 a m u well #7 Atlantic water

Reference Collector Phone

ANDERSON DAN (712) 243-1395

PWS Id & Type
Purchase Order

Results of Analyses

Volatile Organic Analysis

vietilo d'Estre i meriloto	
Concentration ug/L	Quantitation Limit
Tetrachloroethylene 95	0.5 Service Control Service Services

Date Analyzed: 02-15-1997

Method: OA-502.2

Analyst: CR Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 01-15-1997

I.I.I.II...III...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9700210
Date Received 01-09-1997
Project

Date Collected O1-0
Collection Site Atlan
Description wate

01-08-1997 09:30 amu well #7 Atlantic water

Reference Collector Phone PWS Id & Type Purchase Order

ANDERSON DAN (712) 243-1395

Results of Analyses

Volatile Organic Analysis

	<u> </u>
Analyte	
Analyte	Ug/L Quantitation Limit
Tetrachloroethylene	93 0.5 1 0.5 1 0.5 1 0.5 1
Date Analyzed: 01-10-1997	Analyst: CR

Date Analyzed: 01-10-1997

Method: OA-502.2

Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 12-19-1996

I.I.II...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Date Received 12-17-19
Project 12-16-10

Date Collected Collection Site Collection Town Description

llection Town According to the According

PWS Id & Type
Purchase Order

12-17-1996 12-16-1996 11:50 a.m.u. well #7 Atlantic water

ANDERSON DAN (712) 243-1395

Results of Analyses

Volatile Organic Analysis

	Concentration	
Analyte Tetrachloroethylene	ug/L 90	Quantitation Limit 0.5
Comments The chromatographic profile for this samp	ole indicated the	
presence of Trichloroethylene.		}

Date Analyzed: 12-18-1996

Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 11-18-1996

JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC IA 50022

Sample Number **Date Received**

Project

Date Collected Collection Site

Collection Town Description Reference Collector

Phone PWS Id & Type Purchase Order

9608565

11-08-1996

11-07-1996 10:15 a.m.u. well #7

Atlantic water

ANDERSON DAN (712) 243-1395

Results of Analyses

Volatile Organic Analysis

Analyte Concentration Quantitation Li	imit
Tetrachloroethylene 0.5 % 700	1414 1814 年 國際企業
Comments The chromatographic profile indicates the presence of	

1.1.1-Trichloroethane and Trichloroethylene. Date Analyzed: 11-12-1996

Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 10-15-1996

JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC IA 50022

Sample Number 9607706 Date Received **Project Date Collected** Collection Site Collection Town Atlantic Description water Reference Collector Phone

PWS Id & Type **Purchase Order**

10-10-1996 10-09-1996 10:00 a.m.u. well#7

ANDERSON DAN

(712) 243-1395

Results of Analyses

Volatile Organic Analysis

Analyte	Concentration ug/L	Quantitation Limit
Tetrachloroethylene	69	0.5
Date Analyzed: 10-11-1996		Analyst: CR
Method: QA-502.2		Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 09-12-1996

Iddalladlaadda. JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC IA 50022

Sample Number 9606856 Date Received

09-06-1996

Project Date Collected Collection Site

09-05-1996 10:00 awu well#7

Collection Town Description

Atlantic water

Reference Collector Phone

ANDERSON DAN (712) 243-1395

PWS Id & Type Purchase Order

Results of Analyses

Volatile Organic Analysis

Analyte	Concentration ug/L	Quantitation Limit
Tetrachioroethylene	110	0.5
Date Analyzed: 09-08-1996		Analyst: CR
Method: OA-502.2		Verified: PK

ug/L - Micrograms per Liter

Description of units used within this report

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 08-13-1996

I.I.I.I.I.I.I.I.I.I.III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 960
Date Received 08Project

Project
Date Collected
Collection Site
Collection Town
Description
Reference
Collector

Phone PWS Id & Type Purchase Order **9606169** 08-08-1996

08-07-1996 09:45 a.m.u. well#7 Atlantic water

ANDERSON DAN (712) 743-1395

Results of Analyses

Volatile Organic Analysis

Analyte Concentration Quantitation Limit Tetrachloroethylene 110 0.5	Data Applyment 00 00 1006	110	Analyses CD
Concentration	Tetrachioroethylene	110	0.5
		Concentration	

Date Analyzed: 08-09-1996

Method: OA-502.2

Analyst: CR Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 07-15-1996

1.1.1.11...11....1.1...1.1...111 JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC IA 50022

Sample Number Date Received

07-03-1996

Project **Date Collected Collection Site** Collection Town Description

07-02-1996 13:00 a.m.u. well #7 Atlantic water

Reference Collector Phone

ANDERSON DAN (712) 243-1395

PWS Id & Type **Purchase Order**

Results of Analyses

Volatile Organic Analysis

Concentration ug/L Analyte **Ouantitation Limit** Tetrachloroethylene 94 0.5 Comments The chromatographic profile of the sample indicates the presence

of cis-1,2-Dichloroethylene below the quantitation limit of 0.5 ug/L. Trichloroethylene and 1,1,1-Trichloroethane were also

detected.

Date Analyzed: 07-06-1996

Method: OA-502.2

Analyst: CR

Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 06-25-1996

Sample Number 9604691 Date Received 06-21-1996

Project
Date Collected
Collection Site
Collection Town

06-20-1996 10:30 a.m.u. well #7 Atlantic

Description water
Reference
Collector AND

Phone

ANDERSON DAN (712) 243-1395

PWS Id & Type Purchase Order

Comments

2 vials contained headspace.

Results of Analyses

Volatile Organic Analysis

Analyte	Concentration ug/L	Quantitation Limit	
Tetrachloroethylene	110	0.5	
of cis-1,2-Dichloroe ug/L. The presence	ic profile of the sample indicates the presence thylene below the quantitation limit of 0.5 of 1,1,1-Trichloroethane and also indicated from the chromatographic	<i>e</i>	

Date Analyzed: 06-22-1996

Method: OA-502.2

Analyst: CR Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 05-10-1996

1.1.1.11.... JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC IA 50022

Sample Number Date Received

05-07-1996

Project Date Collected

05-06-1996 10:15

Collection Site Collection Town Description

amu well 7 Atlantic water

Reference Collector Phone

ANDERSON DAN (712) 243-1395

PWS Id & Type

Purchase Order

Results of Analyses

Volatile Organic Analysis

	Concentration	With the transfer of the control of		
– 14: 200 km 1940 ili oli 1960 ili 1960 ili 1960 ili 1960 ili oli 1960 ili oli 1960 ili oli 1960 ili 1960 ili 1	CONCENTRATION	 In a Problem (Biblioth Control of the Section Control o		
- FADAIYIC TO THE TANK A THE PARTY OF THE PA	ug/L	Quantitation Limit		
77		0.5		
Tetrachloroethylene	7 3	[0.5		
Comments The chromatographic profile for this samp	nla indicator the			
Conments with the chromatographic profite for this same	ore murcures me)		
presence of 1,1,1-Trichloroethane and Trichloroethylene.				

Date Analyzed: 05-08-1996

Method: OA-502.2

Analyst: CR

Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 04-15-1996

Sample Number 9
Date Received 0
Project

Project
Date Collected
Collection Site

Collection Site
Collection Town
Description
Reference

Collector Phone PWS Id & Type Purchase Order 9601981 04-09-1996

04-03-1996 10:45 amu well 7

amu well / Atlantic water

ANDERSON DAN (712) 243-1395

Results of Analyses

Volatile Organic Analysis

		Cor ug/	ocentratio L	on	Q	uantitation Limit	
Tetrachloroethylene	**	91			0.	5	<u> </u>
Date Analyzed: 04-10-1996			- - .		An	alvst: CR	

Date Analyzed: 04-10-1996

Method: OA-502.2

Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 03-13-1996

I.I.I.I...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9601 Date Received 03-0

Project

Date Collected Collection Site

Collection Town
Description
Reference

Collector Phone PWS Id & Type Purchase Order 9601284

03-07-1996

03-06-1996 10:30 amu well 7

Atlantic water

ANDERSON DAN (712) 243-1395

(712) 243-13

Results of Analyses

Volatile Organic Analysis

	Concentration	Markeda kabatan bahan da	· .
Analyte	ug/L	Quantitati	on Limit
Tetrachloroethylene	94	0.5	
Comments The chromatographic profile for this sample indicates the			
presence of methylene chloride.			

Date Analyzed: 03-09-1996

Method: OA-502.2

Analyst: CR

Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

Coordinator of analytical services - Lynn Hudachek @ 319/335-4500 Ext 2459

The University of Iowa

Date of report: 02-16-1996

I.I.II...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9600865 Date Received 02-09-1996

Project
Date Collected

Collection Town
Description

Description

Description

Date Collected
02-08-1
02-08-1
02-08-1
02-08-1
02-08-1

Reference Collector

Phone
PWS Id & Type
Purchase Order

02-08-1996 10:00 a.m.u. well #7 Atlantic water

ANDERSON DAN (712) 243-1395

Results of Analyses

Volatile Organic Analysis

, ordered or	Earno timeri am
Analyte	Concentration ug/L Quantitation Limit
Tetrachloroethylene	94 0.5
D 4 1 1 00 10 1000	4 1 OP

Date Analyzed: 02-13-1996

Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 01-09-1996

Sample Number | 9600051 Date Received | 01-04-1996

Project

Date Collected Collection Site a.m.u. well #7
Collection Town Description Water

Reference

Collector ANDERSON DAN Phone (712) 243-1395

PWS Id & Type Purchase Order

Results of Analyses

Volatile Organic Analysis

120110 00	
Analyte	Concentration ug/L Quantitation Limit
Tetrachloroethylene	99 - 0.5
Comments The chromatographic profile indicates the	a presence of

Comments The chromatographic profile indicates the presence of

1,1,1-Trichloroethane and Trichloroethylene.

Date Analyzed: 01-05-1996 Method: OA-502.2 Analyst: WB Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 12-12-1995

1.1.1.11....(1......).1.1.1.1.1.1.1 JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET **PO BOX 517** ATLANTIC IA 50022

Sample Number 9511692 Date Received

12-05-1995

Project Date Collected Collection Site

12-04-1995 10:35 a.m.u. well #7 Altantic

Collection Town Description Reference

water ANDERSON DAN

Collector Phone

(712) 243-1395

PWS Id & Type Purchase Order

Results of Analyses

Volatile Organic Analysis

Analyte	Concentration ug/L		Quantitation Limit
Tetrachloroethylene	102	·	0.5
Comments The chromatographic profile for this samp	ole indicates the		
presence of 1.1 1-Trichloroethane and Tr	chloroethylene		

Date Analyzed: 12-09-1995


Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 11-14-1995

Sample Number 9511144 Date Received 11-06-1995

Project

Date Collected Collection Site Collection Town Atlantic

water

Description Reference

Collector ANDERSON DAN
Phone (712) 243-1395

PWS Id & Type Purchase Order

oulto of Amalyzaea

Results of Analyses

Volatile Organic Analysis

Date Analyzed: 11-10-1995 Method: OA-502.2

76410d. OA-302,2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 10-25-1995

Iddilindanial...!!!
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9510272 **Date Received** 10-10-1995 Project Date Collected 10-09-1995 10:15 Collection Site a.m.u. well #7 Collection Town Atlantic Description water Reference Collector ANDERSON DAN Phone (712) 243-1395 PWS Id & Type

Purchase Order

Results of Analyses

Volatile Organic Analysis

Analyte	Concentration Quantitation Limit
Tetrachloroethylene	79 0.5
Date Applyzed: 10-17-1995	Analyst: CR

Date Analyzed: 10-17-1995

Method: OA-502.2

Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 09-20-1995

I.I.I.I...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9509270
Date Received 09-08-1995
Project

Date Collected
Collection Site
Collection Town
Description

09-06-1995 10:10 a.m.u. well #7 Atlantic water

Reference Collector

ANDERSON DAN (712) 243-1395

Phone
PWS Id & Type
Purchase Order

Results of Analyses

Volatile Organic Analysis

		
Analyte	Concentration ug/L	Quantitation Limit
Tetrachloroethylene	80 (0.5
Date Applying 00 14 1005		nalvet. CD

Date Analyzed: 09-14-1995

Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 08-16-1995

III.III...III...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number
Date Received
Project

9508188 08-09-1995

Date Collected
Collection Site

08-08-1995 10:30

Collection Town
Description
Reference
Collector

well #7 Atlantic water

Reference Collector Phone WS Id & Type

ANDERSON DAN (712) 243-1395

PWS Id & Type Purchase Order

Results of Analyses

Volatile Organic Analysis

Analyte	Concentration ug/L	Quantitation Limit
Tetrachloroethylene	99	0.5

Date Analyzed: 08-12-1995

Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 07-18-1995

14.141...11....11...11...11 JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC IA 50022

Sample Number 9506459

Date Received 07-06-1995

Project

Date Collected

07-05-1995 11:05

Collection Site Collection Town Description Reference

well #7 Atlantic water

Collector Phone

ANDERSON DAN (712) 243-1395

PWS Id & Type

Purchase Order

Results of Analyses

Volatile Organic Analysis

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 06-20-1995

Sample Number 9504994 Date Received 06-08-1995 **Project Date Collected** 06-07-1995 11:30 Collection Site a.m.u. well #7 Collection Town Atlantic Description water Reference Collector ANDERSON DAN Phone (712) 243-1395 PWS Id & Type Purchase Order

Results of Analyses

Volatile Organic Analysis

	Analyte	Concentration ug/L Quantitation Limit
۰	Tetrachloroethylene	76 See Communication of the Co
	Date Analyzed: 06-16-1995	Analyst: CR

Method: OA-502.2

.. 011-502.2

Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 05-19-1995

I.I.I.I...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9503902 Date Received 05-11-1995

Project Date Collected Collection Site Collection Town Description

05-10-1995 11:30 a.m.u. well #7 Atlantic water

Reference Collector Phone

ANDERSON DAN (712) 243-1395

PWS Id & Type Purchase Order

Results of Analyses

Volatile Organic Analysis

malyte	Concentration ug/L	Quantitation Limit	Wind Control
'etrachloroethylene	98	0.5]
omments The chromatographic profile for the sam	ple indicates the pr	resence	 -
of 1 1 1-Tricklorgethans and Tricklorget			

tte Analyzed: 05-17-1995

ethod: OA-502.2

Analyst: CR

Venified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 04-19-1995

1.1.1.11...11.....1.1..... JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC IA 50022

Sample Númber 9502952 Date Received 04-13-1995 Project

Date Collected Collection Site Collection Town Description

04-12-1995 10:15 well #7 Atlantic water

Reference Collector Phone PWS Id & Type

ANDERSON DAN (712) 243-1395

Purchase Order

Comments

All w/headspace.

Results of Analyses

Volatile Organic Analysis

Concentration **Ouantitation** Limit Analyte ug/L Tetrachloroethylene 0.5 The chromatographic profile for the sample indicates the presence

of 1,1,1-Trichloroethane and Trichloroethylene.

Date Analyzed: 04-14-1995

Method: OA-502.2

Comments

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 03-13-1995

Sample Number
Date Received
Project
Date Collected

Date Collected
Collection Site
Collection Town
Description
Reference
Collector
Phone

PWS Id & Type
Purchase Order

9501918

03-07-1995

03-06-1995 11:15 well #7

Atlantic

ANDERSON DAN (712) 243-1395

Comments

No time on paperwork.
All vials w/headspace.

Results of Analyses

Volatile Organic Analysis

•	TORUS OF	Section terms 1000		* .	
Analyte		Concentration ug/L	Ç	Quantitation Limit	
Tetrachloroethylene		11	0).5	

Date Analyzed: 03-09-1995

Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 02-10-1995

Sample Number 9501216 Date Received 02-07-1995

Project
Date Collected
Collection Site
Collection Town
Description

02-06-1995 11:20 a.m.u. well #7 Atlantic water

Reference Collector Phone /S Id & Type

ANDERSON DAN (712) 243-1395

PWS Id & Type Purchase Order

Comments

All w/headspace.

Results of Analyses

Volatile Organic Analysis

Analyte	Concentration ug/L	Quantitation Limit
Tetrachloroethylene	99	0.5
Date Analyzed: 02-08-1995		Analyst: CR

Date Analyzed: 02-08-1995

Method: OA-502.2

Analyst: CR Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 01-11-1995

1.1.1.11...11.....1.1..1.1...111 JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET **PO BOX 517** ATLANTIC IA 50022

Sample Number 9500073 **Date Received** 01-05-1995 Project

Date Collected Collection Site Collection Town

01-04-1995 10:45 a.m.u. well #7 Atlantic Description water

Reference Collector

ANDERSON DAN (712) 243-1395

Phone PWS Id & Type Purchase Order

Comments

All w/ headspace.

Results of Analyses

Volatile Organic Analysis

		
Analyte	Concentration ug/L	Quantitation Limit
Tetrachloroethylene	73	0.5

Date Analyzed: 01-08-1995

Method: OA-502.2

Analyst: CR Verified: LM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 12-19-1994

1.1.1.11...11.....1.1..1.1...111 JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC LA 50022

Sample Number 9412283 Date Received 12-07-1994

Project

Date Collected 12-06-1994 10:15 Collection Site

well #7 Atlantic

Collection Town Description Reference

Collector Phone

ANDERSON DAN (712) 243-1395

PWS Id & Type Purchase Order

Results of Analyses

Volatile Organic Analysis

Analyte	Concentration ug/L	Quantitation Limit
Tetrachloroethylene	84	0.5
Date Analyzed: 12-14-1994		Analyst: CR
Method: OA-502.2		Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 11-18-1994

1.1.1.11...11.....1.1.1.1.1.1.111 JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC IA 50022

9411437 Sample Number **Date Received**

11-09-1994

Project

11-08-1994 11:45

Date Collected Collection Site Collection Town Description

well #7 Atlantic water

Reference Collector

MARTENS JON

Phone

(712) 243-1395

PWS Id & Type Purchase Order

Results of Analyses

Volatile Organic Analysis

Voiable Of	Saint unanlan.
Analyte	Concentration ug/L Quantitation Limit
Tetrachioroethylene	86

Date Analyzed: 11-14-1994

Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 10-19-1994

Sample Number 9410148 Date Received 10-12-1994 Project Date Collected 10-11-1994 11:35 Collection Site well #7 Collection Town Atlantic Description water Reference Collector MARTENS JON Phone (712) 243-1395 PWS Id & Type Purchase Order

Results of Analyses

Volatile Organic Analysis

Analyte ug/	/L	Quantitation Limit
Tetrachloroethylene 12	20	0.5

Date Analyzed: 10-18-1994

Method: OA-502.2

Analyst: CR Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 09-21-1994

Sample Number 9409033
Date Received 09-13-1994
Project

Date Collected Collection Site Collection Town Description

09-12-1994 11:15 well #7 Atlantic water

Collector Phone PWS Id & Type Purchase Order

Reference

ANDERSON DAN (712) 243-1395

Results of Analyses

Volatile Organic Analysis

Analyte	Concentration ug/L Quantitation Limit
Tetrachloroethylene	120 0.5

Date Analyzed: 09-17-1994 Method: OA-502.2 Analyst: CR Verified: PK

ug/L - Micrograms per Liter

Description of units used within this report

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 08-11-1994

Sample Number 9407734 08-05-1994 **Date Received** Project Date Collected 08-04-1994 11:00 Collection Site amu well 7 Collection Town Atlantic Description water Reference Collector ANDERSON DAN Phone · (712) 243-1395 PWS Id & Type

Results of Analyses

Purchase Order

Volatile Organic Analysis

1 0144 0	Barre trimerious	
Analyte	Concentration ug/L	Quantitation Limit
Tetrachloroethylene	120	0.5

Date Analyzed: 08-08-1994

Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 07-13-1994

I.I.I.I...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9406223
Date Received 07-07-19
Project

Date Collected
Collection Site
Collection Town
Description

tion Town Atlant
Description Reference
Collector ANDI

Phone PWS Id & Type Purchase Order

07-07-1994 07-06-1994 11:00 well 7 Atlantic water

ANDERSON DAN (712) 243-1395

Results of Analyses

Volatile Organic Analysis

(0.00-0.00)			
Analyte	Concentration ug/L	Quantitation Limit	
Tetrachloroethylene	12	0.5	
Comments The chromatographic profile indicates the presence of			
1,1,1-Trichloroethane and Trichloroethyle			

Date Analyzed: 07-08-1994

Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 06-07-1994

JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC IA 50022

9404850 Sample Number Date Received 06-02-1994

Project

Date Collected 06-01-1994 10:30 Collection Site well 7 Collection Town Atlantic Description water

Reference Collector Phone

ANDERSON DAN

PWS Id & Type Purchase Order (712) 243-1395

Results of Analyses

Volatile Organic Analysis

Analyte	Concentrati ug/L	on Quantitation Limit
Tetrachloroethylene	110	0.5

Date Analyzed: 06-03-1994

Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 05-25-1994

I.I.I.I...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9404241 Date Received 05-12-1994

Project

05-11-1994 09:30

Date Collected
Collection Site
Collection Town
Description

well 7 Atlantic water

Reference Collector Phone

ANDERSON DAN

PWS Id & Type Purchase Order (712) 243-1395

Results of Analyses

Volatile Organic Analysis

Volatile Oi	game Anarysis	
Analyte	Concentration ug/L	Quantitation Limit
Tetrachloroethylene	120	0.5
Comments Trichloroethylene and 1,1,1-Trichloroeth	ane were also detected.	

Date Analyzed: 05-14-1994

Method: OA-502.2

Analyst: CR

Verified: SM

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 04-14-1994

1.1.1.11...11.....1.1..1.1.1.11 JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC IA 50022

Sample Number 9402812 Date Received 04-05-1994 **Project** Date Collected 04-04-1994 11:25 Collection Site well 7 Collection Town Atlantic Description water Reference

Collector Phone PWS Id & Type

Purchase Order

ANDERSON DAN (712) 243-1395

Results of Analyses

Volatile Organic Analysis

. :	Analyte	Concentration ug/L Quantit	200 - 100 000 00 00 00 00 00 00 00 00 00 00 0
	Tetrachloroethylene	160 0.5	المعاولة والمناز الماسان
	Date Analyzed: 04-08-1994	Analyst	: CR

Method: OA-502.2

Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 03-09-1994

1.1.1.11...11.....1.1.1.1.1.111 JON MARTENS ATLANTIC MUNICIPAL UTILITIES 15 W 3RD STREET PO BOX 517 ATLANTIC IA 50022

Sample Number **Date Received**

Project

Date Collected Collection Site

Collection Town Description

Reference

Collector Phone

PWS Id & Type **Purchase Order**

03-03-1994

03-01-1994 13:15

well 7 Atlantic water

ANDERSON DAN

(712) 243-1395

Results of Analyses

Volatile Organic Analysis

Analyte	Concentration ug/L	Quantitation Limit
Tetrachloroethylene	110	0.5

Date Analyzed: 03-05-1994

Method: OA-502.2

Analyst: \$\$ Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 02-09-1994

I.I.II...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number Date Received

9400885 02-03-1994

Project

Date Collected

02-02-1994 11:30

Collection Site: Collection Town Description well #7
Atlantic
water

Reference Collector

ANDERSON DAN

Phone PWS Id & Type Purchase Order (712) 243-1395

Results of Analyses

Volatile Organic Analysis

Апálýte	Concentration ug/L	Quantitation Limit
Tetrachloroethylene	94	0.5
Comments The chromatographic profile indicates the	presence of 1 1 1-	

Trichloroethane and Trichloroethylene.

Date Analyzed: 02-07-1994

Method: OA-502.2

Analyst: CR

Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured

The University of Iowa

Date of report: 01-14-1994

I.I.I.I...II...III
JON MARTENS
ATLANTIC MUNICIPAL UTILITIES
15 W 3RD STREET
PO BOX 517
ATLANTIC IA 50022

Sample Number 9400248

Date Received 01-11-1994

Project 01-10-1994 11:50

Collection Site 1994 7

Collection Site
Collection Town
Description
Reference

Collector ANDERSON DAN
Phone (712) 243-1395

PWS Id & Type Purchase Order

Results of Analyses

Volatile Organic Analysis

	Analyte	Concentration ug/L	Quantitation Limit
I	Tetrachloroethylene	130	0.5
Į	Comments The chromatographic profile also indicates the presence of		

1,1,1-Trichloroethane and Trichloroethylene.

Date Analyzed: 01-12-1994

Method: OA-502.2

Analyst: CR Verified: PK

Description of units used within this report

ug/L - Micrograms per Liter

Quant Limit - Lowest concentration reliably measured